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Abstract
We consider the spectral problem associated with the evolution Schrödinger
equation,(D2 + k2)φ = uφ, whereu is a matrix-square-valued function, with
entries in the Schwartz class defined on the real line. The solutionφ, called
the wavefunction, consists of a function of one real variable, matrix-square-
valued with entries in the Schwartz class. This problem has been dealt for
symmetric potentialsu. We found for the present case that the bound states are
localized similarly to the scalar and symmetric cases, but by the zeroes of an
analytic matrix-valued function. If we add an extra condition to the potential
u, we can determine these states by an analytic scalar function. We do this by
generalizing the scalar and symmetric cases but without using the fact that the
Wronskian of a pair of wavefunction is constant.

PACS numbers: 03.65.Ge, 02.30.Jr

1. Introduction

Bound states have been localized for symmetric potentials [1]. To do this, the fact that the
Wronskian is constant is applied. This is key for the existence of the wavefunctions, their
uniqueness and the location of the bound states. In the present case, the uniqueness and
existence are obtained by solving the Schrödinger evolution equation in two different ways.

We consider the spectral problem for the evolution Schrödinger equation

(D2 + k2)φ = uφ (1)

whereu is a matrix-valued function, with entries in the Schwartz class defined on the real line,
k being a complex number. The solutionφ consists of a matrix-valued function with entries
in the Schwartz class defined on a real line.
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Recent studies involving non-symmetric potentials for problems on half-axis and complex-
valued scalar potentials with a real spectrum of eigenvalues are based, in part, on the
localization of bound states of non-symmetric evolution potentials (see e.g. [2]).

2. The wavefunctions

Solving by means of Fourier transform, this evolution equation can be transformed into a
Volterra integral system. Taking into account the specific asymptotic behavioursψ± ∼
e±ikxIn×n asx → ∞ andφ± ∼ e∓ikxIn×n asx → −∞, we, respectively, obtain the Volterra
integral systems

ψ± = e±ikxIn×n −
∫ ∞

x

eik(x−y) + e−ik(x−y)

2ik
uψ± dy Im k � 0

(2a)

φ± = e∓ikxIn×n +
∫ x

−∞
eik(x−y) + e−ik(x−y)

2ik
uφ± dy Im k � 0

allowing a way for proving the existence of solutionsψ±, φ±, which are analytic on the upper
and lower halfk planes, respectively, with the asymptotic behaviour

φ± ∼ e∓ikxIn×n x → −∞
ψ± ∼ e±ikxIn×n x → ∞.

HereIn×n denotes then × n identity matrix. The solutions in (2) are known as wavefunctions
of the system (1). For the integral systems in (2a), we introduce one reduced wavefunction
m± each, which is respectively defined by the relations

ψ± = e±ikxm± φ± = e∓ikxm̂±.

We also obtain the Volterra integral systems form±, m̂±,

m± = In×n ∓
∫ ∞

x

1 − e∓2ik(x−y)

2ik
um± dy

(2b)

m̂± = In×n ±
∫ x

−∞
1 − e±2ik(x−y)

2ik
um̂± dy.

These integral systems may be solved by successive approximations, which not only grant the
existence and uniqueness of the reduced wavefunctions, but also the analyticity on the half
k planes and continuity on their closures. It is clear that all these properties are true for the
wavefunctions themselves.

3. Existence and uniqueness of the representation of φ+ in terms of ψ±

We also observe that the system in (1) is equivalent to the integral system

� = �(x0)+
∫ x

x0

(
In×n 0

0 u− k2In×n

)
�

where

�(x0) =
(
φ(x0)

φ′(x0)

)
.
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Such a system may be uniquely solved by successive approximations. So if two solutions and
their derivatives agree in a point, they do so on the whole line.

Because of the asymptotic behaviour of the wavefunctions, we find that for large enough
x0 the determinant

det

(
ψ−(x0, k) ψ+(x0, k)

ψ ′−(x0, k) ψ ′+(x0, k)

)

is different from zero. Therefore, the linear system in the unknownaij (k), bij (k)

φ(x0, k) = ψ−(x0, k)a(x0, k)+ ψ+(x0, k)b(x0, k)
(3)

φ′(x0, k) = ψ ′
−(x0, k)a(x0, k)+ ψ ′

+(x0, k)b(x0, k)

has a unique solution.
So,φ+(·, k) andψ−(·, k)a(x0, k) + ψ+(·, k)b(x0, k) are two solutions that agree atx0

together with their derivatives. Therefore, they agree on the whole real line.
Because of the asymptotic behaviour ofψ±, if a linear combination

ψ−c1 + ψ+c2

with c1 andc2 square matrices, is a singular constant matrix, thenc1 = c2 = 0. Taking this
into account, we may conclude thata(x0, k) = a(x1, k) for any pair of large real numbers
x0, x1.

Therefore, we arrive at the following result.

Proposition 1. Let u and k be a potential and a real number, respectively. Then there exist
unique constant matrices a(k) and b(k), such that

φ+ = ψ−a(k)+ ψ+b(k).

Because of the asymptotic behaviour, for large enoughx, we can multiply byψ−1
+ and

(ψ ′+)−1 the first and second equations in (3), respectively. Subtracting the second equation
from the first, we obtain for large enoughx, after reducing terms, the following expression:

W(ψ+(·, k), φ+(·, k))(x) = W(ψ+(·, k), ψ−(·, k))a(k) (4)

where the Wronskian matrix of the two derivable matrix-valued functionsφ andψ is defined
by

W(ψ, φ) = ψψ ′
+ψ

−1φ − ψφ′.
In the scalar and symmetric cases, the fact thata(k) can be analytically extended to the

upper halfk plane follows at once from the fact that the Wronskian is constant.

4. Analytical extension of a(k)

The asymptotic behaviour of the wavefunctions implies, for all realk and for large enoughx,
that

2ika(k) = lim
x→∞W(ψ+(·, k), φ+(·, k))(x)

uniformly on the upper halfk plane. This shows that 2ika(k) is the uniform limit of analytic
functions on the upper halfk plane and the uniform limit of continuous functions on its closure,
namely,

W(ψ+(·, ·), φ+(·, ·))(x)
since the wavefunctions involved are analytic. In summary, we have obtained the following
result.
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Proposition 2. a(k) can be analytically extended to the upper half k plane.

So, the determinant deta is an analytic function on the upper halfk plane. Consequently,
its zeroes are isolated. This implies that the zeros ofa(k) itself are isolated.

From the expressions for the reduced wavefunctions in (2b), we get the continuity and
boundness of

W(ψ+(·, k), ψ−(·, k))
on the real line. Consequently, let us extend the Schwartz formula [3] for the upper halfk
plane to the upper half plane. The relation in (4) now is valid for the upper halfk plane
since it is valid on the real line. However, we conclude that the asymptotic behaviour of the
wavefunctions is invertible. Thus, we have the following result.

Lemma. For large enough x, the zeros of a(k) are exactly those of

W(ψ+(·, k)(x), φ+(·, k))(x).
In other words,

a(k) = W(ψ+(·, k), φ+(·, k))(x) = 0.

5. Determining bound states

In our case, it is still true that bound states can be located by the zeros ofa(k) and their location
is on the upper half plane as it shows the following result without extra conditions on the
potentialu.

Theorem. a(k0) = 0 if and only if φ(x, k0) = ψ(x, k0)ck0 for some constant matrix ck0. In
addition, k0 is on the upper half plane.

Proof. It is clear that if there exists a constant matrix as indicated in the above theorem, then
W(ψ+(·, k), φ+(·, k))(x) = 0. Thus, the lemma implies thata(k) = 0.

Sinceψ+(x, k) is invertible for large enoughx, we can find a matrix-valued function
c(x, k) for large enoughx such that

φ+(x, k) = ψ+(x, k)c(x, k) Im k � 0. (5)

Hence

W(ψ+(x, k), φ+(x, k)) = W(ψ+(x, k), ψ+(x, k)c(x, k)) = −ψ+(x, k)2
dc

dx
(x, k). (6)

Suppose thata(k0) = 0. Thus, by the lemma and becauseψ+(x, k) is invertible for large
enoughx, we get

dc

dx
(x, k0) = 0

for large enoughx. Thenc(x, k0) = ck0 for large enoughx. Consequently, from (5) we get

φ+(x, k0) = ψ+(x, k0)ck0

on an unbounded open interval of the real line. Both sides of the above equation are solutions
of the second-order system (1). This is sufficient to ensure that they agree on the whole real
line. Because of the asymptotic behaviour ofφ+(x, k0) andψ+(x, k0), we may conclude that
Im k0 > 0, which proves the theorem. �
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6. Conclusions

We have proved thata(k) still determines the bound states for non-symmetric potentials as in
the scalar and symmetric cases. This may be done by simple calculations and by using the
well-known theory of complex variables and ODEs.

In order to have deta(k) determining the bound states, it is necessary to impose extra
conditions on the potentialu. For example, let thenth derivativea(n)(k) be invertible for some
n > 0 wheneverk is on the imaginary axis. This is necessary in order to avoid situations
where deta(k) = 0 buta(k) �= 0.

It is well known that linear evolution equations are connected with some nonlinear ones,
for example, in our case, with the evolution Korteweg–de Vries (KdV) equation [1, 4]

ut + uxxx − 3(u2)x = 0.

On the other hand, the localization of bound states has played an important role in
recent techniques to solve problems involving non-symmetric potentials on the half-axis and
complex-valued scalar potentials with a real spectrum of eigenvalues, which are related to
problems involving non-symmetric matrix potentials (see e.g. [2]).
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